


ЭТИКЕТКА

СЛКН.431271.071 ЭТ Микросхема интегральная 564 ЛА7ТЭП Функциональное назначение – Четыре логических элемента «2И-НЕ»

Климатическое исполнение УХЛ Схема расположения выводов

Условное графическое обозначение

Таблица назначения выводов

№ вывода	Назначение вывода	№ вывода	Назначение вывода
1	Вход	8	Вход
2	Вход	9	Вход
3	Выход	10	Выход
4	Выход	11	Выход
5	Вход	12	Вход
6	Вход	13	Вход
7	Общий	14	Питание

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ 1.1 Основные электрические параметры (при $t=(25\pm10)^{\circ}C$) Таблица 1

Наименование параметра, единица измерения, режим измерения	Буквенное	Норма	
танменование параметра, единица измерения, режим измерения	обозначение	не менее	не более
1	2	3	4
1. Выходное напряжение низкого уровня, B, при: $U_{CC}\!=\!5$ B, 10 B , $U_{IH}\!=\!U_{CC_i}\!U_{IL}\!=\!0$ В	U_{OL}	-	0,01
2. Выходное напряжение высокого уровня, B, при: $U_{CC} = 5$ B, $U_{IH} = 5$ B, $U_{IL} = 0$ B $U_{CC} = 10$ B, $U_{IH} = 10$ B, $U_{IL} = 0$ B	U _{ОН}	4,99 9,99	
3. Максимальное выходное напряжение низкого уровня, B, при: $U_{CC}=5~B,~U_{IH}=3,5~B,~U_{IL}=1,5~B$ $U_{CC}=10~B,~U_{IH}=7,0~B,~U_{IL}=3,0~B$	U _{OL max}	-	0,95 2,90
4. Минимальное выходное напряжение высокого уровня, B, при: $U_{CC} = 5$ B, $U_{IH} = 3.5$ B, $U_{IL} = 1.5$ B $U_{CC} = 10$ B, $U_{IH} = 7.0$ B, $U_{IL} = 3.0$ B	U _{OH min}	3,6 7,2	
5. Входной ток низкого уровня, мкА, при: $U_{CC} = 10~B,~U_{IH} = 10~B,~U_{IL} = 0~B$ $U_{CC} = 15~B,~U_{IH} = 15~B,~U_{IL} = 0~B$	$I_{\rm IL}$	-	/-0,05/ /-0,10/
6. Входной ток высокого уровня, мкА, при: $U_{CC} = 10~B,~U_{IH} = 10~B,~U_{IL} = 0~B$ $U_{CC} = 15~B,~U_{IH} = 15~B,~U_{IL} = 0~B$	I_{IH}	-	0,05 0,10

Продолжение таблицы 1				
1	2	3	4	
7. Выходной ток низкого уровня, мА, при: $U_{CC} = 5$ B, $U_{IH} = 5$ B, $U_{IL} = 0$ B , $U_{O} = 0.5$ B $U_{CC} = 10$ B, $U_{IH} = 10$ B, $U_{IL} = 0$ B , $U_{O} = 0.5$ B	I_{OL}	0,25 0,45	-	
8 . Выходной ток высокого уровня, мА, при: $U_{CC} = 5$ B, $U_{IH} = 5$ B, $U_{IL} = 0$ B, $U_{O} = 4.5$ B $U_{CC} = 10$ B, $U_{IH} = 10$ B, $U_{IL} = 0$ B, $U_{O} = 9.5$ B	$ m I_{OH}$	/-0,25/ /-0,65/	-	
9. Ток потребления, мкА, при: U _{CC} = 5 B, U _{IH} = 5 B, U _{IL} = 0 B U _{CC} = 10 B, U _{IH} = 10 B, U _{IL} = 0 B U _{CC} = 15 B, U _{IH} = 15 B, U _{IL} = 0 B	I _{CCL} I _{CCH}	- - -	0,05 0,10 2,00	
$10.$ Время задержки распространения при включении, нс, при: $U_{CC}=5~B,~U_{IH}=5~B,~U_{IL}=0~B,~C_L=50~\pi\Phi$ $U_{CC}=10~B,~U_{IH}=10~B,~U_{IL}=0~B,~C_L=50~\pi\Phi$	t _{PHL}	- -	160 80	
11. Время задержки распространения при выключении, нС, при: $U_{CC}=5~B,~U_{IH}=5~B,~U_{IL}=0~B,~C_L=50~\pi\Phi$ $U_{CC}=10~B,~U_{IH}=10~B,~U_{IL}=0~B,~C_L=50~\pi\Phi$	t _{PLH}	- -	160 80	
13. Входная емкость, п Φ , при: $U_{CC} = 10~B$	C_{I}	-	11	

1.2 Содержание драгоценных металлов в 1000 шт. изделий:

золото г, серебро г, в том числе: золото г/мм на 14 выводах, длиной мм.

Цветных металлов не содержится.

2 НАДЕЖНОСТЬ

- 2.1 Наработка микросхем до отказа Тн в режимах и условиях эксплуатации, допускаемых ТУ исполнения, при температуре окружающей среды (температуре эксплуатации) не более (65+5) $^{\circ}$ C не менее 100000 ч, а в облегченном режиме (U_{CC} от 5 до 10B)- не менее 120000 ч.
- 2.2 Гамма процентный срок сохраняемости (T_{Cγ}) при γ = 99% при хранении в упаковке изготовителя в отапливаемом хранилище или хранилище с регулируемыми влажностью и температурой, или в местах хранения микросхем, вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Гамма – процентный срок сохраняемости в условиях, отличающихся от указанных, - в соответствии с разделом 4 ОСТ В 11 0998.

3 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие качества данного изделия требованиям AEЯР.431200.610-01ТУ при соблюдении потребителем условий и правил хранения, монтажа и эксплуатации, приведенных в ТУ на изделие.

Срок гарантии исчисляется с даты изготовления, нанесенной на микросхемы.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 564 ЛА7ТЭП соответствуют техническим условиям АЕЯР.431200.610-01ТУ и признаны годными для эксплуатации.

Приняты по	от	(дата)	
Место для штампа ОТК			Место для штампа ВП
Место для штампа «Перепроверка п	іроизведена		
Приняты по (извещение, акт и др.)	ОТ	(дата)	
Место для штампа ОТК			Место для штампа ВП

Цена договорная

5 УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

5.1 При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 500 В. Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общая точка, выход – общая точка, вход – выход, питание-общая точка.

Остальные указания по применению и эксплуатации – в соответствии с АЕЯР.431200.610ТУ